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Fig. 3, Output power and frequency variation as a function of varactor bias. Gunn device CXVY 19/1-2, Varactor diode: a.

and the rectified RF current through the varactors was not more than
50 pA. Following is a table of varactor diode parameters:

Cijo Cis VBr Vr@1 mA
Type (pF) (oF) %) W)
a 2.89 1.05 50 0.78
b 1.67 0.59 50 0.76
c 1.05 0.39 52 0.76

The loaded Q of the cavities was estimated by frequency-pulling
experiments. The variation in the values of Qz was from 50 at zero
varactor bias to 160 at —40 V varactor bias. These values for Qr lie
within the range obtainable in a single-post full-height waveguide
cavity [4]. The FM noise of the oscillator of Fig. 2 b was measured
and was found to be 65 rms Hz/+/Hz at 1-KHz off-carrier. The
oscillator frequency was 9.95 GHz.

It has been demonstrated that a wide-band varactor-tuned Gunn
oscillator can be constructed in standard X-band waveguide cavity.
Furthermore, the oscillator constructed in full-height waveguide
shows less variation in the output power over the tuning range and
eliminates the requirement for a transition to X-band waveguide.
With a higher power Gunn device (CXY 19/1-2, Pg=170 mW in test
cavity) minimum power level of 90 mW with a variation of 41.3 dB
and nearly 700 MHz of electronic tuning has been achieved (Fig. 3).
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Propagation Along Transversely Inhomogeneous
Coaxial Transmission Lines
ROBERT E. MCINTOSH anp LUKE J. TURGEON

Abstract—Numerical “shooting” methods are employed in ob-
taining the dispersion curves of a coaxial waveguide loaded with a
radially inhomogeneous dielectric. The utility of this technique is
tested by comparing results with known analytical solutions. The
method is also used to find the dispersion curves of a coaxial wave-
guide loaded with a radially Gaussian-distributed plasma.

I. INTRODUCTION

Propagation of electromagnetic (EM) signals along transversely
inhomogeneous transmission lines is of current interest because of the
potential that these lines show for various waveguide applications.
Various treatments of circular transmission lines having a radial in-
homogeneity of the permittivity have been previously reported. Ah
Sam and Klinger [1], for example, obtained a dispersion relationship
for a coaxial line where the dielectric constant is inversely propor-
tional to the square of the radius. Yamada and Watanabe have solved
the wave equation for the azimuthally symmetrical circular wave-
guide where the dielectric constant varies quadratically with the
radius [2]. Unfortunately, analytical solutions of the transmission
properties of radially inhomogenous waveguides are unobtainable
when the variation of the electrical properties of the medium is
arbitrary. Much attention, therefore, has been given to numerical
methods that employ finite-difference or variational techniques [3].

Numerical solutions have been obtained by various investigators
for situations where the radially varying permittivity is approximated
by a finite number N of concentric cylindrical shells [4], [S]. The
dielectric constant of each of these shells is assumed to be constant,
but not necessarily the same as the other shells. By assuming that the
fields in each shell can be expressed in terms of Bessel functions, the
problem is reduced to satisfying the boundary conditions at the inner
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Fig, 1. Coaxial transmission system having an arbitrarily varying dielectric

in the radial direction.

and outer surface of each shell. This is accomplished numerically by
evaluating the eigenfrequencies of a system of 4N-4 simultaneous
algebraic equations. The accuracy of this method improves, in prin-
cipal, as the number of shells is increased. However, increased com-
puting time and the accompanying machine errors offset this effect,
particularly when the permittivity is strongly inhomogeneous or the
radial variation of the fields is large, as in the case of higher order
modes [4].

English [6] has successfully employed vector variational tech-
niques in solving for EM wave transmission in a circular waveguide
containing a concentric dielectric rod. This variational approach can
be extended to the case where the radial variation of the dielectric
medium is arbitrary. Although this approach should be advantageous
in terms of reducing the computer storage requirements, some effort
is needed in choosing trial fields that satisfy as many boundary condi-
tions as possible.

In this short paper, we show that it is advantageous in the case
of a transversely inhomogeneous coaxial line to numerically solve for
each of the field components using “shooting” methods rather than to
use the above techniques. To do this, we employ a trial-and-error
technique of matching the boundary condition at the surface of the
outer conductor. Although this approach of solving boundary value
problems has been previously used in solving various mechanical and
heat transfer problems [7], it has not been used in solving cylindrical
waveguide problems,

As an example, we treat the coaxial waveguide system shown in
Fig. 1, where there are no azimuthal or axial variations in the permit-
tivity. The radial variation of the dielectric constant in the region be-
tween the two conductors is assumed to be describable in terms of an
appropriate mathematical function. In this case, Maxwell’s curl
equations may be expressed by four ordinary first-order differential
equations and the boundary conditions can be obtained by setting the
tangential electric fields equal to zero at the conducting walls. These
equations can be solved by iteration techniques for a given frequency
by making sure that the boundary conditions are satisfied at the
inner conductor (#=a) and by assuming a value for the propagation
constant 8. Only those values of 8 that lead to zero tangential electric
fields at the outer radius, however, are valid eigenvalues for this sys-
tem. Consequently, the dispersion curve for a given mode is obtained
by systematically choosing values of 8 for each frequency until the
field equations are satisfied in the dielectric region and at both
boundaries.

This technique of determining the dispersive properties of the line
is essentially a trial-and-error procedure. Nevertheless, it does present
a number of advantages for the case of an azimuthally symmetric cir-
cular waveguide structure. Since all field components are computed
in the determination of the correct 8 value, these field components
are available for printout or display. Also, the ability to select the size
of radial increments used in the iteration procedure allows this tech-
nique to yield good accuracy for higher order modes and strong radial
inhomogeneities of the permittivity.

In Section I, an outline of the theory for rotationally symmetric
coaxial waveguides is given. Solutions of the EM fields inside two
different radially inhomogeneous coaxial lines are then given for
various propagation modes in Section II1I. Comments are also made
regarding the computational time and accuracy of this technique.
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I1. THEORY AND SOLUTION METHOD

For harmonic time variation, the electric field E and the magnetic

field H in an inhomogeneous dielectric obey Maxwell's two curl equa-
tions

VX E = —jouHl )
and
V x pig =jwe(7)f. (2)

If the dielectric medium is rotationally symmetric, does not change in
the axial direction, and is lossless, the fields vary as exp [j(n¢—82)]
(i.e., Bis restricted to real values only). Taking the phase between the
various components into account by defining the terms H,=jH,,
H,=H,, H,=H,, E.=E,, E,=jE,, and E, =jE,, the following set of
first-order differential equations are obtained:
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where the prime represents a differentiation with respect to ». It
should be noted that Hy, H,, Ey4, and E, can be obtained by the itera-
tion [7] of (3)-(6) if E4 and E, are set equal to zero at r=a and the
proper value of 8 is chosen. The values of E, and H, can then be ob-
tained by substituting these values into (7) and (8). Furthermore, the
E and H fields obtained also satisfy Maxwell’s divergence equations
because those equations follow from taking the divergence of (1) and
2).

It has been shown that transverse electric and transverse magnetic
modes can propagate along a transversely inhomogeneous waveguide
if the fields do not vary azimuthally [1]. These modes are designated
as TEg, and TM,, modes, respectively. Other more complicated
modes can also propagate in the coaxial waveguide shown in Fig. 1.
These modes are called hybrid modes because all of the field com-
ponents are nonzero. Here they are designated as EH,., modes, where
n represents the number of angular variations and m represents the
number of radial variations of the field components. Fortunately, all
of these modes can be characterized in terms of the magnetic field
components at the inner conductor. It can be seen from (3)—(8) that
the TE,, modes have no ¢ component of the magnetic field at 7 =a,
whereas the TM,, modes have no z component of the magnetic field
at r=a. The EH,, modes, on the other hand, have both components
Hy(a) and H,(a), and it is therefore necessary to determine the ratio
Hy(e)/H.(a) in addition to § when computing the fields.

The procedure used to obtain the dispersion curve for each mode
can be described as follows.

1) The permittivity of the radially inhomogeneous dielectric is
represented by an appropriate function in the region between the two
conductors.

2) The ratio Hy(a)/H.(e) (H3(a)/H,(a) =0 for TE, modes, etc.)
is chosen and (3)—(8) are iterated from r=a to =5 for various 8
values (w is held constant) until the boundary conditions at the outer
conductor are met.

3) If the boundary conditions at =5 cannot be met (for hybrid
modes), step 2) is repeated using a different value of Hy(a)/H,(a)
until the boundary conditions are satisfied.

4) The dispersion curve is then obtained by repeating steps 2) and
3) for the frequencies w, w4Aw, + + +, w+kAw, + + +, w-+nAw (where
Aw is the frequency interval between points on the dispersion curve).

In obtaining the dispersion curve, the computer algorithm system-
atically searches for those values of 8 that approximate the boundary
conditions at each frequency. In each case, the fields are computed
out to 7 =b, and the magnitudes of E4(b) and E,(b) are checked to de-
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Fig, 2. Typical EM field distributions for permittivity proportional
to 772 (a) TEo mode. (b) TMus mode, (c) Dispersion curves.

termine if these field components fall within some small interval
around zero. If they do not, the search procedure is continued until
E4(b) and E,(b) approximate the boundary conditions within the pre-
determined error.

The fields obtained by the above procedure represent valid mode
solutions because they satisfy Maxwell’s equations throughout the
region, including the boundaries. In the following section, examples
are given that indicate the usefulness of the above approach.

I1I. EXAMPLES

In order to illustrate the usefulness of the direct computational
technique discussed previously, we present two examples in this sec~
tion. The first example considered is the radially inhomogeneous co-
axial transmission line treated analytically by Ah Sam and Klinger
[1]. The second example is that of a coaxial transmission line in which
a gaseous discharge occupies the region between the inner and outer
conductor.

A. Example I—edl /r? Dielectric Inhomogenetiy

As a first example, we treat the coaxial line having a radial in-
homogeneity in the permittivity given by ed/7? (I =constant). This
example is particularly illustrative because it is one of the very few
examples that has an analytical solution.

The field components for the TEy»n mode and the TMgy; mode are
shown in Fig. 2(a) and (b) for the case where [ =0.01 m?, ¢ =0.04 m,
and 5 =0.1 m. Both of these solutions were obtained in less than 10 s
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Fig. 3. Typical hybrid field distribution for permittivity of
Example 2. (a) EH11 mode. (b) EH12 mode.

from a CDC 3600 computer using 60 iterations, and the magnitude of
E4(b) and E.(b) was less than 1075 times the peak value of E4(#) and
E,(r) in both cases.

The dispersion curves for various TEg, and TM,, modes have
been determined for this example and are shown in Fig. 2(c). It is
seen that the TMoe mode is the dominant waveguide mode for this
structure. As a check, the dispersion curves for the TE modes were
compared with the analytical results of Ah Sam and Klinger [1].
These modes were seen to satisfly the dispersion relationship

In(80) _ In(8D)

where I,,(x) and K, (x) are modified Bessel functions of the first and
second kind. Hybrid modes can also be observed in the frequency
range shown corresponding to each set of TEp~TM, modes. How-
ever, we will delay further discussion of these modes to the next ex-
ample.

B. Example II—The Radial Coaxial Gas Discharge

For a second example, we choose to deal with the experimental
system of Mclntosh and Andrews [8] that includes a coaxial trans-
mission line in which the dielectric medium between the two conduc-
tors is inhomogeneous, owing to a low-pressure gaseous discharge.
Electron number density and temperature measurements have been
made for this system using a Langmuir probe and a microwave inter-
ferometer with the result that the permittivity has been determined
as a function of radius. The dependence of ¢ on frequency is due to the
intrinsic dispersion of the ionized medium. We are able to approxi-
mate the permittivity with a Gaussian distribution such that

(B*exp [— (r — r0)%/20] + A42)

w?

e(r) = ¢ [1 -

where B and 4 are two constants such that B+4 =1 (the peak
plasma frequency at » =), w is the frequency of the EM wave, and
o is the standard deviation of the permittivity profile. In the example
treated here, 4 =9.75X10°rad /s, B=11.7 X10%rad /s, l1=15.25X10?
rad/s, and ¢ =0.7917 m2.

The fields of various modes are shown in Figs. 3 and 4(a) and (b).
The lowest order mode is the TMgp mode, which is shown in Fig. 4(a).
This mode represents a perturbation of the TEM mode, which exists
in a homogeneous coaxial line. Thus the field components E, lessen
as the frequency increases (and the dielectric inhomogeneity de-
creases). The TMg mode shown in Fig. 4(b) is plotted with those
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Fig. 4. Typical EM field distributions for permittivity of Example 2. (a) TMoa

mode (fundamental mode), (b) TMo mode (hashed curves represent field dis-
tributions in a coaxial line filied uniformly with a plasma having II =15.25 X10°
rad/s; By is the propagation constant for the uniform case.) (c) Dispersion
curves for permittivity of Example 2 and for a coaxial waveguide filled with a
homogeneous plasma.

fields that would exist in a coaxial line, if the electron plasma fre-
quency were uniform and equal to IT. It is seen that the alterations in
the field components for the higher order modes are smaller because
the permittivity inhomogeneity is not appreciable in the frequency
range where the higher modes propagate.

The field variations for the first two hybrid modes are shown in
Fig. 3 when w/Il =2.29. These fields were obtained by systematically
trying different ratios of Hy(e)/H.(a) in the search procedure out-
lined in Section II. In the case of the EHy mode, this ratio is ap-
proximately Hy(a)/H.(a) =0.176, and for the EHy mode, Hy(a)/
H,(e)=0.230. The cutoff frequencies of higher hybrid modes are
sufficiently great that the permittivity of the medium is essentially
that of free space in the frequency range where these modes propa-
gate. Consequently, these modes are approximately linear combina-
tions of TE» and TM,., modes that can propagate in a homogeneous
coaxial line.

Dispersion curves (solid lines) for the modes discussed above are
seen in Fig. 4(c) for the example treated. Dispersion plots (dotted
lines) are also given for those modes that would propagate along a
homogeneously filled plasma coaxial line. Although the cutoff fre-
quency of the fundamental (TMg) mode occurs at the same fre-
quency (w=H) as the cutoff frequency of the homogeneous line, the
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cutoff appears to be much sharper. The cutoff frequencies for the
higher order modes, on the other hand, differ significantly. For these
modes, the cutoff frequency obtained by considering the dielectric
inhomogeneity is lower than that of coaxial modes in a homogeneous
line having a dielectric constant e=¢ (1 —II?/w?. The cutoff fre-
quencies of these inhomogeneous modes correspond more closely to
the cutoff frequency of modes in a uniform coaxial line where the
dielectric constant is the average value

o=/ be<r)rdr] /0~ a).

C. Discussion

The speed and accuracy with which the field calculations were
carried out indicate that the procedure employed is practical for
arbitrary radial inhomogeneities of the electrical properties of the
medium. In every instance, the computing time required to calculate
the field solution at each frequency for the above examples was less
than 10 s. The accuracy of these solutions was checked by substitut-
ing the numerical solutions obtained into Maxwell’s divergence equa-
tions, which for our system can be written as

]

" = =" H,4pm - 10)
’ 7 ¢ g v

and

E, 1 ¢
B =12 gE, [— - e—] E.. (11
4

s €

In every case, the values of H,’ and E,’ obtained from (10) and (11)
were within 1 percent of the values calculated in the main routine.
The accuracy of the procedure was also checked by comparing nu-
merical solutions with known analytical solutions of the higher order
modes in a homogeneous coaxial line. The computed cutoff frequen-
cies and dispersion curves were within 1 percent of the analytically
determined values below the TEg,sg coaxial waveguide mode.
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A Quick Accurate Method to Measure the Dielectric
Constant of Microwave Integrated-Circuit Substrates

JOHN Q. HOWELL

Abstract—=A technique is described that makes possible the ac-
curate measurement of the dielectric constant of microwave inte-
grated-circuit substrates. The substrate is metallized on all sides,
hence forming a tiny resonant cavity, and the resonant frequencies
are determined either from transmission or reflection. The dielectric
constant is then calculated to an accuracy of better than 1 percent.
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