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Fig. 3. Output power and frequency variation as a function of varactor bias. Gunn device CXY 19/1-2. Varactor diode: u.

and the rectified RF current through the varactors was not more than
50 MA. FoIlowing is a table of varactor diode parameters:

Cjll cj6 VBR Vr(?j,l mA
Type (pF) (pF) (V) (v)

a 2.89 1.05 50 0.78
b 1.67 0.59 50 0.76
c 1.05 0.39 52 0.76

The loaded Q of the cavities was estimated by frequency-pulling

experiments. The variation in the values of Q~ was from 50 at zero
varactor bias to 160 at —40 V varactor bias. These values for QL lie
within the range obtainable in a single-post full-height waveguide

cavity [4]. The FM noise of the oscillator of Fig. 2 b was measured
and was found to be 65 rms Hz/<= at l-KHz off-carrier. The
oscillator frequency was 9.95 GHz.

It has been demonstrated that a wide-band varactor-tuned Gunn

oscillator can be constructed in standard X-band waveguide cavity.
Furthermore, the oscillator constructed in full-height waveguide

shows less variation in the output power over the tuning range and

eliminates the requirement for a transition to X-band waveguide.

With a higher power Gunn device (CXY 19/1-2, I’o = 170 mW in test

cavity) minimum power level of 90 mW with a variation uf +1.3 dB
and nearly 700 MHz of electronic tuning has been achieved (Fig. 3).
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Propagation Along Transversely Inhomogeneous

Coaxial Transmission Lines

ROBERT E. MCINTOSH AND LUKE J. TURGEON

Abstract—Numerical “8hooting” methods are employed in ob-
taining the dispersion curves of a coszial waveguide loaded witlz a

radially inhomogeneous dielectric. The utility of this technique is

tested by comparing results with known analytical solutions. The

method is also used to find the dispersion curves of a coaxial wave-

guide loaded with a radially Gaussian-distributed plasma.

I. INTRODUCTION

Propagation of electromagnetic (EM) signals along transversely

inhomogeneous transmission lines is of current interest because of the
potential that these lines show for various waveguide applications.
Various treatments,of circular transmission lines having a radial in-
homogeneity of thepermittivity have been previously reported. Ah
Samand Klinger [l], forexample, obtained a dispersion relationship

for a coaxial line where the dielectric constant is inversely propor-

tional to the square of the radius. Yamada and Watanabe have solved

the wave equation for the azimuthally symmetrical circular wave-
guide where the dielectric constant varies quadratically with the

radius [2]. Unfortunately, analytical solutions of the transmission
properties of radially inhomogenous waveguides are unobtainable

when the variation of the electrical properties of the medium is
arbitrary. Much attention, therefore, has been given to numerical
methods that employ finite-difference or variational techniques [3].

Numerical solutions have been obtained by various investigators
for situations where the radially varying permittivity is approximated

by a finite number Nof concentric cylindrical shells [4], [5]. The

dielectric constant of each of these shells is assumed to be constant,
but not necessarily the same as the other shells. By assuming that the

fields in each shell can be expressed in terms of Bessel functions, the

problem is reduced to satisfying the boundary conditions at the inner
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Fig. 1. Coaxial transmission system having an arbitrarily varying dielectric
in the radial direction.

and outer surface of each shell. This is accomplished numerically by
evaluating the eigenfrequencies of a system of 4N-4 simultaneous

algebraic equations. The accuracy of this method improves, in prin-
cipal, as the number of shells is increased. However, increased com-
puting time and the accompanying machine errors offset this effect,
particularly when the permittivity is strongly inhomogeneous or the
radial variation of the fields is large, as in the case of higher order
modes [4].

English [6] has successfully employed vector variational tech-
niques involving for EM wave transmission in a circular waveguide

containing concentric dielectric rod. This variational approach can
be extended to the case where the radial variation of thedlelectric

medium is arbitrary. Although this approach should be advantageous

in terms of reducing the computer storage requirements, some effort

isneeded in choosing trial fields that satisfy asmanyboundary condi-

tions as possible.
Inthisshort paper, weshow that it is advantageous in the case

of a transversely inhomogeneous coaxial line to numerically solve for
each of the field components using “shooting” methods rather than to
use the above techniques. To do this, we employ a trial-and-error

technique of matching the boundary condition at the surface of the
outer conductor. Although this approach of solving boundary value
problems has been previously used in solving various mechanical and

heattransfer problems [7], ithasnot been used involving cylindrical

waveguide problems.
As an example, we treat the coaxial waveguide system shown in

Fig. 1, where there are no azimuthal or axial variations in the permit-

tivity. The radial variation of the dielectric constant in the region be-

tween the two conductors is assumed to be describable in terms of an

appropriate mathematical function. In this case, Maxwell’s curl
equations may be expressed by four ordinary first-order differential
equations and the boundary conditions can be obtained by setting the
tangential electric fields equal to zero at the conducting walls. These
equations can be solved by iteration techniques for a given frequency
by making sure that the boundary conditions are satisfied at the
inner conductor (r= a) and by assuming a value for the propagation
constant B. Only those values of D that lead to zero tangential electric
fields at the outer radius, however, are valid eigenvalues for this sys-

tem. Consequently, the dispersion curve for a given mode is obtained
by systematically choosing values of B for each frequency until the

field equations are satisfied in the dielectric region and at both

boundaries.
This technique of determining the dispersive properties of the line

is essentially a trial-and-error procedure. Nevertheless, it does present
a number of advantages for the case of an azimuthally symmetric cir-
cular waveguide structure. Since all field components are computed
in the determination of the correct @ value, these field components
are available for printout or display. Also, the ability to select the size
of radial increments usedin theiteration procedure allows this tech-
niqueto yield good accuracy forhigher order modes and strong radial
inhomogeneities of the permittivity.

In Section II, an outline of the theory for rotationally symmetric

coaxial waveguides is given. Solutions of the EM fields inside two
different radially inhomogeneous coaxial lines are then given for

various propagation modes in Section III. Comments are also made
regarding the computational time and accuracy of this technique.

11. THEORY AND SOLUTION METHOD

For harmonic time variation, the electric field A and the magnetic

field H in an inhomogeneous dielectric obey Maxwell’s two curl equa-

tions

V X Z = –jupfi (1)

and

v x 2 = ji.le(r).li. (2)

If the dielectric medium is rotationally symmetric, does not change in

the axial direction, and is Iossless, the fields vary as exp [j(mj –Bz) ]
(i.e., L3is restricted to real values only). Taking the phase between the

various components into account by defining the terms H, =jlZ,,
H+= H+, H.= H=, E, =E,, E6 =jE+, and Ez =jE., the following set of
first-order differential equations are obtained:

E; = ~ [Q2/,K – BZ]H$ – ~ Hz (3)
we core

‘“’=EH++:w2’elHz-:

Hz’ =+ [CU,W– j32]E+ – : E.

H“=is$”z’’l’++-+

(4)

(5)

(6)

R,=~H++~Hz
CM CtMr

(7)

H,=–~E4–~Ez

W
(8)

copv

where the prime represents a differentiation with respect to r. It

should be noted that H+, H., E+, and E, can be obtained by the itera-

tion [7] of (3)–(6) if E+ and IL are set equal to zero at r= a and the
proper value of B is chosen. The values of E, and H, can then be ob-

tained by substituting these values into (7) and (8). Furthermore, the
E and H fields obtained also satisfy Maxwell’s divergence equations
because those equations follow from taking the divergence of (1) and
(2).

It has been shown that transverse electric and transverse magnetic
modes can propagate along a transversely inhomogeneous waveguide
if the fields do not vary azimuthally [1]. These modes are designated

as TEh and TMti modes, respectively. Other more complicated
modes can also propagate in the coaxial waveguide shown in Fig. 1.
These modes are called hybrid modes because all of the field com-

ponents are nonzero. Here they are designated as EH.W modes, where

n represents the number of angular variations and m represents the
number of radial variations of the field components. Fortunately, all

of these modes can be characterized in terms of the magnetic field
components at the inner conductor. It can be seen from (3)– (8) that
the TEO~ modes have no @ component of the magnetic field at r = a,
whereas the TM% modes have no z component of the magnetic field
at r = a. The EH.m modes, on the other hand, have both components
H$(a) and H.(a), and it is therefore necessary to determine the ratio
lf$(a)/H.(a) in addition to L3when computing the fields.

The procedure used to obtain the dispersion curve for each mode

can be described as follows.
1) The permittivity of the radially inhomogeneous dielectric is

represented by an appropriate function in the region between the two

conductors.
2) The ratio ZZ$(a)/H.(a) (H+(a) /Hg(a) = O for TEb modes, etc.)

is chosen and (3)–(8) are iterated from r = a to r = b for various p
values (a is held constant) until the boundary conditions at the outer

conductor are met.
3) If the boundary conditions at ? = b cannot be met (for hybrid

modes), step 2) is repeated using a different value of Ho(a) /H.(a)
until the boundary conditions are satisfied.

4) The dispersion curve is then obtained by repeating steps 2) and

3) for the frequencies u, Q+ACO, . . ., CJ+kACO, . . ., CO+?ZACO(where
Acu is the frequency intervaI between points on the dispersion curve).

In obtaining the dispersion curve, the computer algorithm system-
atically searches for those values of D that approximate the boundary

conditions at each frequency. In each case, the fields are computed

out to r = b, and the magnitudes of E+(b) and E.(b) are checked to de-
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Fig, 2. Typical EM field distributions for permittivity proportional
to 7-2. (a) TEOL mode. (b) TMw mode. (c) Dispersion curves.

termine if these field components fall within some small interval
around zero. If they do not, the search procedure is continued until

E~(b) and Ez(b) approximate the boundary conditions within the pre-

determined error.
The fields obtained by the above procedure represent valid mode

solutions because they satisfy Maxwell’s equations throughout the
region, including the boundaries. In the following section, examples

are given that indicate the usefulness of the above apprc~ach.

III. EXAMPLES

In order to illustrate the usefulness of the direct computational

technique discussed previously, we present two examples in this sec-

tion. The first example considered is the radially inhomogeneous co-
axial transmission line treated analytically by Ah Sam and Klinger
[1]. The second example is that of a coaxial transmission line in which

a gaseous discharge occupies the region between the inner and outer

conductor.

A. Example I—cJ/r2 Dielectric Inhomogenetiy

As a first example, we treat the coaxial line having a radial in-
homogeneity in the permittivity given by cOZ/rZ (1= constant). This
example is particularly illustrative because it is one of the very few
examples that has an analytical solution.

The field components for the TEOI mode aud the TM08 mode are

shown in Fig. 2(a) and (b) for the case where 1= 0.01 mz, a =0.04 m,

and b = 0.1 m. Both of these solutions were obtained in less than 10 s

~,50x ,Olo,atihec
EH ,,

‘: WY’”= I i

Fig. 3. Typical hybrid field distribution for permittivity of
Example 2. (a) EHII mode. (b) EHM mode.

from a CDC 3600 computer using 60 iterations, and the magnitude of

Ed(b) and E.(b) was less than 10-5 times the peak value of Ed(v) and
E.(r) in both cases.

The dispersion curves for various TEom and TMo~ modes have

been determined for thk example and are shown in Fig. 2(c). It is

seen that the TMw mode is the dominant waveguide mode for this

structure. As a check, the dispersion curves for the TE modes were

compared with the analytical results of Ah Sam and Klinger [1].
These modes were seen to satisfy the dispersion relationship

_ . M@Zm(Ba)

K@(z) Km(fm)

where 1~ (x) and Km(x) are modified Bessel functions of the first and
second kind. Hybrid modes can also be observed in the frequency

range shown corresponding to each set of TEM–TM on modes. How-
ever, we will delay further discussion of these modes to the next ex-
ample.

B. Example II—The Radial Coaxial Gas Discharge

For a second example, we choose to deal with the experimental

system of McIntosh and Andrews [8] that includes a coaxial trans-

mission line in which the dielectric medium between the two conduc-

tors is inhomogeneous, owing to a low-pressure gaseous discharge.
Electron number density and temperature measurements have been
made for this system using a Langmuir probe and a microwave inter-

ferometer with the result that the permittivity has been determined
as a function of radius, The dependence of e on frequency is due to the
intrinsic dispersion of the ionized medium. We are able to approxi-
mate the permittivity with a Gaussian distribution such that

[
(B2 exp [- (r – fO)2/i%] +~~

e(r) = 60 1 —
~z 1

where B and A are two constants such that B +A = II (the peak
plasma frequency at r = rO), w is the frequency of the EM wave, and

u is the standard deviation of the permittivity profile. In the example
treated here, A =9.75 X10erad/s, B =11.7 x1O’ rad/s, If=15.25x10g
rad/s, and u =0.7917 mz.

The fields of various modes are shown in Figs. 3 and 4(a) and (b).
The lowest order mode is the TMOO mode, which is shown in Fig. 4(a).
This mode represents a perturbation of the TEM mode, which exists
in a homogeneous coaxial line. Thus the field components E. lessen
as the frequency increases (and the dielectric inhomogeneity de-
creases). The TMOI mode shown in Fig. 4(b) is plotted with those
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Fig. 4. Typical EM field distributions for permittivity of Example 2. (a) TMOO
mode (fundamental mode). (b) TMOI mode (hashed curves represent field dis-
tributions in a coaxial line tilled uniformly with a plasma having II =15.2 5 X log
rad/s; L?H is the propagation constant for the uniform case.) (c) ~lsPersiOn
curves for permittivity of Example 2 and for a coaxial waveguide tilled with a
homogeneous plasma.

fields that would exist in a coaxial line, if the electron plasma fre-
quencywere uniform and equal toIL Itisseen that the alterationsin

the field components for the higher order modes are smaller because

the permittivity inhomogeneityis not appreciable in the frequency

range where the higher modes propagate.
The field variations forthefirst two hybrid modes are shown in

Fig. 3 when CJ/~ = 2.29. These fields were obtained by systematically

trying different ratios of lI~(a)/H=(a) in the search procedure out-
lined in Section II. In the case of the E& mode, this ratio isaP-
proximately iY4(a)/H,(a) =0.176, and for the E~12 mode, ~*(a)/

IL(a) =O.230. The cutoff frequencies of higher hybrid modes are
sufficiently great that the permittivity of the medium is essentially
that of free space in the frequency range where these modes propa-
gate. Consequently, these modes areapproximately linear combina-
tions of TE~. and TM~~ modes that can propagate in a homogeneous
coaxial line.

Dispersion curves (solid lines) forthemodes discussed above are

seen in Fig. 4(c) for the example treated. Dispersion plots (dotted
lines) arealso given for those modes that would propagate along a

homogeneously filled plasma coaxial line. Although the cutoff fre-
quency of the fundamental (TM,N) mode occurs at the same fre-
quency (a= II) as the cutoff frequency of the homogeneous line, the

cutoff appears to be much sharper. The cutoff frequencies for the
higher order modes, on the other hand, differ significantly. For these

modes, the cutoff frequency obtained by considering the dielectric
inhomogeneity is lower than that of coaxial modes ina homogeneous

line having a dielectric constant t= CO(l–IP/m2). The cutoff fre-

quencies of these inhomogeneous modes correspond more closely to
the cutoff frequency of modes in a uniform coaxial line where the
dielectric constant is the average value

(c) = [ j’e(r)r d~] /(~ – a).
.

C. Discussion

The speed and accuracy with which the field calculations were
carried out indicate that the procedure employed is practical for

arbitrary radial inhomogeneities of the electrical properties of the
medium. In every instance, thecomputing time required to calculate

the field solution at each frequency for theabove examples was less ‘
than 10 s. The accuracy of these solutions was checked by substitut-
ingthenumerical solutions obtained into Maxwell’s divergence equa-

tions, which foroursystern can be written as

(lo)

and

nE6
Er’=–– [1/3E, – ;–: II,. (11)

r

Inevery case, thevalues of HJand EJ obtained from (10) and (11)

were withh 1 percent of the values calculated in the main routine.

The accuracy of the procedure was also checked by comparing nu-

merical solutions with known analytical solutions of the higher order
modes in a homogeneous coaxial line. The computed cutoff frequen-
cies and dispersion curves were within 1 percent of the analytically
determined values below the TE0,S8 coaxial waveguide mode.
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A Quick Accurate Method to Measure the Dielectric

Constant of Microwave Integrated-Circuit Substrates

JOHN Q. HOWELL

Afrsfracf-A technique is described that makes possible the ac-
curate measurement of the dielectric constant of microwave inte-
grated-circuit substrates. The substrate is metallized on all sides,

hence forming a tiny resonant cavity, and the resonant frequencies

are determined either from transmission or reflection. The dielectric
constant is then calculated to an accuracy of better than 1’ percent.
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